ApoA-I mimetic peptides with differing ability to inhibit atherosclerosis also exhibit differences in their interactions with membrane bilayers

J Biol Chem. 2007 Jan 19;282(3):1980-8. doi: 10.1074/jbc.M606231200. Epub 2006 Nov 16.

Abstract

Two homologous apoA-I mimetic peptides, 3F-2 and 3F(14), differ in their in vitro antiatherogenic properties (Epand, R. M., Epand, R. F., Sayer, B. G., Datta, G., Chaddha, M., and Anantharamaiah, G. M. (2004) J. Biol. Chem. 279, 51404-51414). In the present work, we demonstrate that the peptide 3F-2, which has more potent anti-inflammatory activity in vitro when administered intraperitoneally to female apoE null mice (20 microg/mouse/day) for 6 weeks, inhibits atherosclerosis (lesion area 15,800 +/- 1000 microm(2), n = 29), whereas 3F(14) does not (lesion area 20,400 +/- 1000 microm(2), n = 26) compared with control saline administered (19,900 +/- 1400 microm(2), n = 22). Plasma distribution of the peptides differs in that 3F-2 preferentially associates with high density lipoprotein, whereas 3F(14) preferentially associates with apoB-containing particles. After intraperitoneal injection of (14)C-labeled peptides, 3F(14) reaches a higher maximal concentration and has a longer half-time of elimination than 3F-2. A study of the effect of these peptides on the motional and organizational properties of phospholipid bilayers, using several NMR methods, demonstrates that the two peptides insert to different extents into membranes. 3F-2 with aromatic residues at the center of the nonpolar face partitions closer to the phospholipid head group compared with 3F(14). In contrast, only 3F(14) affects the terminal methyl group of the acyl chain, decreasing the (2)H order parameter and at the same time also decreasing the molecular motion of this methyl group. This dual effect of 3F(14) can be explained in terms of the cross-sectional shape of the amphipathic helix. These results support the proposal that the molecular basis for the difference in the biological activities of the two peptides lies with their different interactions with membranes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apolipoprotein A-I / chemistry*
  • Atherosclerosis / metabolism*
  • Biomimetics
  • Carbon / chemistry
  • Female
  • Lipid Bilayers / chemistry
  • Lipoproteins / chemistry
  • Magnetic Resonance Spectroscopy
  • Mice
  • Mice, Inbred C57BL
  • Models, Molecular
  • Peptides / chemistry
  • Phospholipids / chemistry
  • Protein Binding

Substances

  • Apolipoprotein A-I
  • Lipid Bilayers
  • Lipoproteins
  • Peptides
  • Phospholipids
  • Carbon