Mouse embryonic stem cell-derived feeder cells support the growth of their own mouse embryonic stem cells

Cell Biol Int. 2006 Dec;30(12):1041-7. doi: 10.1016/j.cellbi.2006.08.003. Epub 2006 Aug 24.

Abstract

Feeder cells are usually used in culturing embryonic stem cells (ESCs) to maintain their undifferentiated and pluripotent status. To test whether mouse embryonic stem cells (mESCs) may be a source of feeder cells to support their own growth, 48 fibroblast-like cell lines were isolated from the same mouse embryoid bodies (mEBs) at three phases (10th day, 15th day, 20th day), and five of them, mostly derived from 15th day mEBs, were capable of maintaining mESCs in an undifferentiated and pluripotent state over 10 passages, even up to passage 20. mESCs cultured on the feeder system derived from these five cell lines expressed alkaline phosphatase and specific mESCs markers, including SSEA-1, Oct-4, Nanog, and formed mEBs in vitro and teratomas in vivo. These results suggest that mEB-derived fibroblasts (mEB-dFs) could serve as feeder cells that could sustain the undifferentiated growth and pluripotency of their own mESCs in culture. This study not only provides a novel feeder system for mESCs culture, avoiding a lot of disadvantages of commonly used mouse embryonic fibroblasts as feeder cells, but also indicates that fibroblast-like cells derived from mESCs take on different functions. Investigating the molecular mechanisms of these different functional fibroblast-like cells to act on mESCs will contribute to the understanding of the mechanisms of mESCs self-renewal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / analysis
  • Biomarkers / metabolism
  • Cell Differentiation*
  • Cell Line
  • Coculture Techniques*
  • Embryo, Mammalian / cytology*
  • Embryonic Stem Cells / cytology*
  • Embryonic Stem Cells / metabolism
  • Fibroblasts / cytology
  • Mice

Substances

  • Biomarkers