Spin-driven phonon splitting in bond-frustrated ZnCr2S4

Phys Rev Lett. 2006 Aug 25;97(8):087204. doi: 10.1103/PhysRevLett.97.087204. Epub 2006 Aug 22.

Abstract

Magnetic susceptibility, specific heat, thermal expansion, and IR spectroscopy provide experimental evidence that the two subsequent antiferromagnetic transitions in ZnCr2S4 at TN1 = 15 K and TN2 = 8 K are accompanied by significant thermal and phonon anomalies. The anomaly at TN2 reveals a temperature hysteresis typical for a first-order transformation. Because of strong spin-phonon coupling, both magnetic transitions at TN1 and TN2 induce a splitting of phonon modes. The anomalies and phonon splitting observed at TN2 are suppressed by strong magnetic field. Regarding the small positive Curie-Weiss temperature Theta approximately 8 K, we argue that this scenario of two different magnetic phases with different magnetoelastic couplings results from the strong competition of ferromagnetic and antiferromagnetic exchange.