Optical control of the singlet-triplet transition in Rb2

J Chem Phys. 2006 Sep 28;125(12):124315. doi: 10.1063/1.2355492.

Abstract

By controlling nonresonant dynamic Stark shifts it is possible to effectively decouple the intramolecular couplings of simple molecules. We have illustrated this effect in the 1 (1)Sigma(u)-->1 (3)Pi(u) transition in Rb(2). The laser scheme implies two important control knobs: the laser frequency, which must be chosen to avoid both single and multiphoton resonances and to select different electronic environments for the singlet and triplet states, and the pulse intensity, which must amplify the asymmetry in the dynamic polarizabilities that allows the decoupling, avoiding undesired strong-pulse effects. The mechanism of the scheme implies not only brute-force energy shifts but also light-induced reshaping of the potentials to avoid the undesired crossings. Quantitative aspects of the method are analyzed by using molecular models of increasing complexity for Rb(2).