Neuronavigation and surgery of intracerebral tumours

J Neurol. 2006 Sep;253(9):1123-36. doi: 10.1007/s00415-006-0158-3. Epub 2006 Sep 20.

Abstract

Approximately four decades after the successful clinical introduction of framebased stereotactic neurosurgery by Spiegel and Wycis, frameless stereotaxy emerged to enable more elaborate image guidance in open neurosurgical procedures. Frameless stereotaxy, or neuronavigation, relies on one of several different localizing techniques to determine the position of an operative instrument relative to the surgical field, without the need for a coordinate frame rigidly fixed to the patients' skull. Currently, most systems are based on the optical triangulation of infrared light sources fixed to the surgical instrument. In its essence, a navigation system is a three-dimensional digitiser that correlates its measurements to a reference data set, i.e. a preoperatively acquired CT or MRI image stack. This correlation is achieved through a patient-to-image registration procedure resulting in a mathematical transformation matrix mapping each position in 'world space' onto 'image space'. Thus, throughout the remainder of the surgical procedure, the position of the surgical instrument can be demonstrated on a computer screen, relative to the CT or MRI images. Though neuronavigation has become a routinely used addition to the neurosurgical armamentarium, its impact on surgical results has not yet been examined sufficiently. Therefore, the surgeon is left to decide on a case-by-case basis whether to perform surgery with or without neuronavigation. Future challenges lie in improvement of the interface between the surgeon and the neuronavigator and in reducing the brainshift error, i.e. inaccuracy introduced by changes in tissue positions after image acquisition.

Publication types

  • Review

MeSH terms

  • Brain Neoplasms / surgery*
  • Humans
  • Neuronavigation*
  • Neurosurgical Procedures*
  • Stereotaxic Techniques