Multi-scale Cryptosporidium/sand interactions in water treatment

Water Res. 2006 Oct;40(18):3315-31. doi: 10.1016/j.watres.2006.07.036. Epub 2006 Sep 18.

Abstract

Owing to its widespread occurrence in drinking water supplies and its significant resistance to environmental stresses, Cryptosporidium parvum is regarded as one of the most important waterborne microbial parasites. Accordingly, a substantial research effort has been aimed at elucidating the physical, chemical and biological factors controlling the transport and removal of Cryptosporidium oocysts in natural subsurface environments and drinking water treatment facilities. In this review, a multi-scale approach is taken to discuss the current state-of-knowledge on Cryptosporidium-sand interactions at a nano-scale, bench-scale and field-scale relevant to water treatment operations. Studies conducted at the nano-scale and bench-scale illustrate how techniques based on the principles of colloid and surface chemistry are providing new insights about oocyst-sand interactions during transport of Cryptosporidium oocysts in granular porous media. Specifically, atomic force microscopy and impinging jet experiments reveal the importance of oocyst surface biomolecules in controlling Cryptosporidium/sand interactions by a mechanism of steric hindrance. Traditional bench-scale column transport studies conducted over a broad range of experimental conditions highlight the role of physicochemical filtration and physical straining in the removal of oocysts from the pore fluid. Such experiments have also been used to evaluate the influence of biofilms formed on grain surfaces and the presence of natural organic matter on oocyst-sand interactions. Whilst filtration studies conducted at the plant-scale have been useful for evaluating the effectiveness of various materials as surrogates for Cryptosporidium oocysts, at this macro-scale, little could be learnt about the fundamental mechanisms controlling oocyst-sand interactions. This review of the literature on Cryptosporidium-sand interactions at different length scales points to the importance of combining studies at the plant-scale with well-controlled investigations conducted at the nano- and bench-scales. Furthermore, because oocyst surface properties play an important role in controlling the extent of interaction with sand surfaces, a thorough discussion of Cryptosporidium oocyst characteristics and electrical properties is presented.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cryptosporidium*
  • Filtration / methods
  • Oocysts*
  • Particle Size
  • Porosity
  • Silicon Dioxide*
  • Surface Properties
  • Water Microbiology*
  • Water Purification* / methods

Substances

  • Silicon Dioxide