Determination of parathion in biological fluids by means of direct solid-phase microextraction

Anal Bioanal Chem. 2006 Nov;386(6):1717-26. doi: 10.1007/s00216-006-0735-4. Epub 2006 Sep 5.

Abstract

A new and simple procedure for the determination of parathion in human whole blood and urine using direct immersion (DI) solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) is presented. This technique was developed using only 100 microL of sample, and ethion was used as internal standard (IS). A 65-microm Carbowax/divinylbenzene (CW/DVB) SPME fibre was selected for sampling, and the main parameters affecting the SPME process such as extraction temperature, adsorption and desorption time, salt addition, agitation and pH effect were optimized to enhance the sensitivity of the method. This optimization was also performed to allow the qualitative determination of parathion's main metabolite, paraoxon, in blood. The limits of detection and quantitation for parathion were 3 and 10 ng/mL for urine and 25 and 50 ng/mL for blood, respectively. For paraoxon, the limit of detection was 50 ng/mL in blood. The method showed linearity between the LOQ and 50 microg/mL for both matrices, with correlation coefficients ranging from 0.9954 to 0.9999. Precision and accuracy were in conformity with the criteria normally accepted in bioanalytical method validation. The mean absolute recoveries were 35.1% for urine and 6.7% for blood. Other parameters such as dilution of sample and stability were also validated. Its simplicity and the fact that only 100 microL of sample is required to accomplish the analysis make this method useful in forensic toxicology laboratories to determine this compound in intoxications, and it can be considered an alternative to other methods normally used for the determination of this compound in biological media.

MeSH terms

  • Humans
  • Parathion / blood*
  • Parathion / urine*
  • Salts
  • Solid Phase Microextraction / methods*

Substances

  • Salts
  • Parathion