Equilibrium and dynamics of Langmuir monolayers when the interface is a selective solvent: Polystyrene-b-poly(t-butyl acrylate) block copolymers

J Chem Phys. 2006 Aug 21;125(7):074706. doi: 10.1063/1.2238868.

Abstract

The surface pressure of monolayers of insoluble diblock copolymers has been measured. One of the blocks is made of poly(t-butyl acrylate) (PtBA), and the other one by polystyrene (PS). The interface is a good solvent for PtBA, while it is a poor solvent for PS. For the sake of comparison, monolayers of a PtBA homopolymer (good solvent conditions) and of poly(4-hydroxy styrene) (P4HS) (poor solvent conditions) have been also measured. It has been found that the relative length of the blocks plays an important role on the shape of the surface pressure Pi versus surface concentration Gamma curves and also on the shape of the equilibrium compressibility versus Gamma curves. However, it does not affect the maximum value of Pi reached at high Gamma's. Surprisingly, the ellipsometric thickness of the copolymer monolayers is almost independent of the relative length of the blocks. The dynamics of the monolayers has been studied by step compression and by surface-light scattering techniques. When M(w,PtBA) >> M(w,PS) single exponential relaxations are observed. However, stretched exponentials are obtained for M(w,PS) > or = M(w,PtBA). The relaxation times decrease with increasing Gamma for all the copolymers studied. This is the behavior usually found for poor solvent conditions (P4HS) and opposite to that found for homopolymers under good solvent conditions [PtBA, poly(vinylacetate)]. This means that the solvent quality of the interface does not determine the pressure dependence of tau. The elasticity modulus of the monolayers in the kilohertz range takes values that are similar to those of the high-frequency limit of the relaxation experiments. This means that the relaxation processes have characteristic frequencies below 1 Hz.