Cryopreservation procedure does not modify human carotid homografts mechanical properties: an isobaric and dynamic analysis

Cell Tissue Bank. 2006;7(3):183-94. doi: 10.1007/s10561-005-0655-0.

Abstract

The viscoelastic and inertial properties of the arterial wall are responsible for the arterial functional role in the cardiovascular system. Cryopreservation is widely used to preserve blood vessels for vascular reconstruction but it is controversially suspected to affect the dynamic behaviour of these allografts. The aim of this work was to assess the cryopreservation's effects on human arteries mechanical properties. Common carotid artery (CCA) segments harvested from donors were divided into two groups: Fresh (n = 18), tested for 24-48 h after harvesting, and Cryopreserved (n = 18) for an average time of 30 days in gas-nitrogen phase, and finally defrosted. Each segment was tested in a circulation mock, and its pressure and diameter were registered at similar pump frequency, pulse and mean pressure levels, including those of normotensive and hypertensive conditions. A compliance transfer function (diameter/pressure) derived from a mathematical adaptive modelling was designed for the on line assessment of the arterial wall dynamics and its frequency response. Assessment of arterial wall dynamics was made by measuring its viscous (eta), inertial (M) and elastic (E) properties, and creep and stress relaxation time constant (tauC and tauSR, respectively). The frequency response characterization allowed to evaluate the arterial wall filter or buffer function. Results showed that non-significant differences exist between wall dynamics and buffer function of fresh and cryopreserved segments of human CCA. In conclusion, our cryopreservation method maintains arterial wall functional properties, close to their fresh values.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carotid Arteries* / transplantation
  • Cryopreservation*
  • Elasticity
  • Humans
  • Transplantation, Homologous