Structural and spectroscopic investigations of blue, vanadium-doped ZrSiO4 pigments prepared by a sol-gel route

J Phys Chem B. 2005 Dec 1;109(47):22112-9. doi: 10.1021/jp054254o.

Abstract

A sol-gel reaction starting from silicon and zirconium alkoxides, in water-ethanol mixtures, was employed to obtain vanadium-doped zirconium silicate powders (zircon). The reactions were performed by modulating both (a) the amount of the vanadium salt in the starting mixture and also (b) the amount of mineralizer (NaF). The products of the sol-gel reaction were calcined at 600, 800, 1000, and 1200 degrees C. The samples were characterized by X-ray powder diffraction (XRPD), electron paramagnetic resonance spectroscopy (EPR), scanning electron microscopy (SEM), X-ray absorption near-edge spectroscopy (XANES), and diffuse UV-vis-near-IR reflectance spectroscopy. Results from the structural, morphological, and optical characterization are examined and cross-compared to produce a consistent picture of the key factors leading to the formation, growth, and optical properties of the reaction products.