Molecular dynamics study of the methanol effect on the membrane morphology of perfluorosulfonic ionomers

J Phys Chem B. 2005 Sep 15;109(36):17274-80. doi: 10.1021/jp052647h.

Abstract

The membranes of a perfluorosulfonic acid polymer swollen in 10-80 wt % methanol solution were investigated to elucidate the methanol effect on their morphologies, such as size of the solvent cluster, solvent location, and polymer structure, by using isothermal-isobaric molecular dynamics simulations. In higher methanol concentrations, we found less-spherical solvent aggregation and a more spread polymer structure because of the ampholytic nature of methanol. The partial radial distribution functions between solvent oxygen and fluorocarbons, which are composed of the main chain, clearly show that methanol is located closer to the polymer matrix than water. On the other hand, water is preferentially located in the vicinity of an acidic headgroup, SO(3)(-), compared with methanol, although both have similar attractive interaction energies to the acidic group. Furthermore, we discussed solvent dynamics and hydrogen bonding between sulfonic oxygen and solvent O-H groups.