Lateral mobility of tethered vesicle-DNA assemblies

J Phys Chem B. 2005 May 19;109(19):9773-9. doi: 10.1021/jp044947p.

Abstract

Supported lipid membranes are particularly attractive for use in biochemical assays because of their resistance to nonspecific adsorption and their unique ability to host transmembrane proteins. Although ideal for use in many surface-based detection techniques, supported bilayers can make the incorporation of proteins problematic due to the steric constraints of the underlying substrate. A recently developed strategy overcomes this obstacle by tethering liposomes to supported lipid bilayers via cholesterol-tagged DNA. Due to the fluidity of the bilayer, the vesicle assemblies exhibited significant lateral mobility. The corresponding diffusion coefficients were then investigated using fluorescence recovery after photobleaching (FRAP). The diffusivity was neither sensitive to the size of the vesicles nor to the length of the DNA tether. However, changing from single cholesterol tethers to double cholesterol tethers caused a decrease in the diffusivity of the assemblies by a factor of 3. Perhaps even more notable was the fact that single cholesterol-DNA without vesicles diffused 6 times faster than the corresponding assemblies. Double cholesterol-DNA diffused 11 times faster. This discrepancy is believed to arise from the fact that each vesicle is tethered to the bilayer by multiple DNA pairs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cholesterol / chemistry
  • DNA / chemistry*
  • Diffusion
  • Fluorescence
  • Lipid Bilayers
  • Microscopy, Fluorescence
  • Models, Molecular
  • Photochemistry

Substances

  • Lipid Bilayers
  • DNA
  • Cholesterol