Electron localization function as information measure

J Phys Chem A. 2005 Nov 10;109(44):10038-43. doi: 10.1021/jp053184i.

Abstract

The conditional two-electron probability function, which defines the electron localization function (ELF) of Becke and Edgecombe in the Kohn-Sham theory, is interpreted as the nonadditive (interorbital) Fisher information contained in the electron distribution. The probability normalization considerations suggest a use of the related information measure defined in terms of the unity-normalized probability distributions (shape factors of the electron densities), as the key ingredient of the modified information-theoretic ELF. This modified Fisher information density is validated by a comparison with the original two-electron probability function. Illustrative applications to typical molecular systems demonstrate the adequacy of the modified information-theoretic ELF in extracting the key features of the electron distributions in molecules. The overall Fisher information itself and the associated information-distance quantities are also proposed as complementary localization functions.