A high-resolution FT-IR study of the fundamental bands nu7, nu8, and nu18 of ethene secondary ozonide

J Phys Chem A. 2005 Oct 6;109(39):8719-23. doi: 10.1021/jp051647e.

Abstract

Ozonization reaction of ethene in neat film at 77 K was performed. Separation of ethene secondary ozonide from the other products of the reaction was performed by continuous pumping of the reactor. Only the products, which evaporated from the walls of the reactor at 185 K, were transferred to the gas cell. The high-resolution infrared absorption spectrum of gaseous ethene secondary ozonide (C(2)H(4)O(3)) in a static gas long-path absorption cell has been recorded in the 900-1100 cm(-1) spectral region at 185 K. The spectral resolution was 0.003 cm(-1). Analyses of the nu(7)(A) band at 1037.0 cm(-1), the nu(8)(A) band at 956.1 cm(-1), and the nu(18)(B) band at 1082.1 cm(-1) have been performed using the Watson Hamiltonian model (A, reduction; III(r), representation). A set of ground-state rotational and quartic centrifugal distortion constants have been obtained, and upper state spectroscopic constants have been determined for the bands investigated. A local resonance observed in nu(18) is explained as c-Coriolis interaction with nu(10) + nu(11).