Cu3C4-: a new sandwich molecule with two revolving C2(2-) units

J Phys Chem A. 2005 Feb 3;109(4):562-70. doi: 10.1021/jp047384q.

Abstract

A combined photoelectron spectroscopy (PES) and ab initio study was carried out on a novel copper carbide cluster in the gas phase: Cu(3)C(4)(-). It was generated in a laser vaporization cluster source and appeared to exhibit enhanced stability among the Cu(3)C(n)(-) series. Its PES spectra were obtained at several photon energies, showing numerous well-resolved bands. Extensive ab initio calculations were performed on Cu(3)C(4)(-), and two isomers were identified: a C(2) structure ((1)A) with a Cu(3)(3+) triangular group sandwiched by two C(2)(2-) units and a linear CuCCCuCCCu structure (D(infinity)(h), (1)Sigma(g)(+)). A comparison of ab initio PES spectra with experimental data showed that the sandwich Cu(3)C(4)(-) cluster was solely responsible for the observed spectra and the linear isomer was not present, suggesting that the C(2) structure is the global minimum in accordance with CCSD(T)/6-311+G predictions. Interestingly, a relatively low barrier (0.4-0.6 kcal/mol) was found for the internal rotation of the C(2)(2-) units in the sandwich Cu(3)C(4)(-). To test different levels of theory in describing the Cu(m)C(n)(-) systems and lay foundations for the validity of the theoretical methods, extensive calculations at a variety of levels were also carried out on a simpler copper carbide species CuC(2)(-), where two isomers were found to be close in energy: a linear one (C(infinity)(v), (1)Sigma(+)) and a triangular one (C(2)(v), (1)A(1)). The calculated electronic transitions for CuC(2)(-) were also compared with the PES data, in which both isomers were present.