A lattice-gas cellular automaton to model diffusion in restricted geometries

J Phys Chem B. 2006 Jul 13;110(27):13554-9. doi: 10.1021/jp061783z.

Abstract

Topological constraints play a fundamental role in problems involving the transfer of heat, matter, or information in a discrete network. Flows in microporous media are the most common cases in which the thermodynamic and transport properties of adsorbate are strongly influenced by its interactions with the confining medium. Combining two local Monte Carlo operations and a Lattice-Gas Cellular Automaton, we constructed an equilibrium synchronous network of cells highly sensitive to the state of their neighborhood and able to capture the effects of confinement by means of few flexible local parameters and a parallel, local evolution rule. Results of an application of the model to the specific problem of geometrical restricted long-range diffusion are used to interpret the behaviors of particles in tight confinement.