Validation of the tracer-pulse method for multicomponent liquid chromatography, a classical paradox revisited

Anal Chem. 2006 Jul 1;78(13):4615-23. doi: 10.1021/ac0601260.

Abstract

The tracer-pulse method was extended and validated for the determination of multicomponent adsorption isotherms in liquid chromatography. Competitive adsorption isotherms can be determined for any number of solutes, up to the column resolution limit. The basic principle is to equilibrate the column with an eluent containing a mixture of the solutes and then measure the migration velocity of each of them through the column. It is easy to calculate the stationary phase concentrations from these velocities, given the eluent composition. As in frontal analysis, real competitive isotherm data are measured using this method, unlike other methods, which only produce parametric estimates. The method was used to measure the binary isotherms of beta-blockers on a Kromasil C8 column. The data were fitted to competitive bi-Langmuir adsorption isotherm functions and was found to agree well with the results of frontal analysis and the perturbation method. Computer simulations based on the isotherm parameters were performed and displayed very good agreement with the experimental chromatograms. An intriguing and seemingly paradoxical property is visualized and discussed: the fact that the injected molecules are not found in the detected peaks.