Oscillation of viscous drops with smoothed particle hydrodynamics

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 1):051201. doi: 10.1103/PhysRevE.73.051201. Epub 2006 May 3.

Abstract

We investigate the nonlinear oscillations of heat-conductive, viscous, liquid drops in vacuum with zero gravity, using smoothed particle hydrodynamics (SPH). The liquid drops are modeled as a van der Waals fluid in two dimensions so that the models apply to flat, disklike drops. Attention is focused on small- to large-amplitude oscillations of drops that are released from a static elliptic shape. We find that for small-amplitude motions the combined dissipative effects of finite viscosity and heat conduction induce rapid decay of the oscillations after a few periods, while for large-amplitude motions wave damping is governed by the action of both viscous dissipation and surface tension forces. The transition from periodic to aperiodic decay at Re approximately 1 as well as the quadratic decrease of the frequency with the initial aspect ratio at large Re are reproduced in good agreement with previous theoretical predictions and experimental results.