Conical and glancing Jahn-Teller intersections in the cyclic trinitrogen cation

J Chem Phys. 2006 Jun 14;124(22):224309. doi: 10.1063/1.2204602.

Abstract

The ground and electronically excited states of cyclic N(3) (+) are characterized at the equilibrium D(3h) geometry and along the Jahn-Teller distortions. Lowest excited states are derived from single excitations from the doubly degenerate highest occupied molecular orbitals (HOMOs) to the doubly degenerate lowest unoccupied molecular orbitals (LUMOs), which give rise to two exactly and two nearly degenerate states. The interaction of two degenerate states with two other states eliminates linear terms and results in a glancing rather than conical Jahn-Teller intersection. HOMO-2-->LUMOs excitations give rise to two regular Jahn-Teller states. Optimized structures, vertical and adiabatic excitation energies, frequencies, and ionization potential (IP) are presented. IP is estimated to be 10.595 eV, in agreement with recent experiments.