Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes

Circ Res. 2006 Jul 21;99(2):172-82. doi: 10.1161/01.RES.0000232546.92777.05. Epub 2006 Jun 15.

Abstract

Mitochondrial Ca2+ ([Ca2+]m) regulates oxidative phosphorylation and thus contributes to energy supply and demand matching in cardiac myocytes. Mitochondria take up Ca2+ via the Ca2+ uniporter (MCU) and extrude it through the mitochondrial Na+/Ca2+ exchanger (mNCE). It is controversial whether mitochondria take up Ca2+ rapidly, on a beat-to-beat basis, or slowly, by temporally integrating cytosolic Ca2+ ([Ca2+]c) transients. Furthermore, although mitochondrial Ca2+ efflux is governed by mNCE, it is unknown whether elevated intracellular Na+ ([Na+]i) affects mitochondrial Ca2+ uptake and bioenergetics. To monitor [Ca2+]m, mitochondria of guinea pig cardiac myocytes were loaded with rhod-2-acetoxymethyl ester (rhod-2 AM), and [Ca2+]c was monitored with indo-1 after dialyzing rhod-2 out of the cytoplasm. [Ca2+]c transients, elicited by voltage-clamp depolarizations, were accompanied by fast [Ca2+]m transients, whose amplitude (delta) correlated linearly with delta[Ca2+]c. Under beta-adrenergic stimulation, [Ca2+]m decay was approximately 2.5-fold slower than that of [Ca2+]c, leading to diastolic accumulation of [Ca2+]m when amplitude or frequency of delta[Ca2+]c increased. The MCU blocker Ru360 reduced delta[Ca2+]m and increased delta[Ca2+]c, whereas the mNCE inhibitor CGP-37157 potentiated diastolic [Ca2+]m accumulation. Elevating [Na+]i from 5 to 15 mmol/L accelerated mitochondrial Ca2+ decay, thus decreasing systolic and diastolic [Ca2+]m. In response to gradual or abrupt changes of workload, reduced nicotinamide-adenine dinucleotide (NADH) levels were maintained at 5 mmol/L [Na+]i, but at 15 mmol/L, the NADH pool was partially oxidized. The results indicate that (1) mitochondria take up Ca2+ rapidly and contribute to fast buffering during a [Ca2+]c transient; and (2) elevated [Na+]i impairs mitochondrial Ca2+ uptake, with consequent effects on energy supply and demand matching. The latter effect may have implications for cardiac diseases with elevated [Na+]i.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Cells, Cultured
  • Cytosol / metabolism
  • Energy Metabolism / drug effects*
  • Guinea Pigs
  • Homeostasis
  • Mitochondria / drug effects
  • Mitochondria / metabolism*
  • Myocardial Contraction / drug effects*
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism*
  • NAD / metabolism
  • Sodium / pharmacology*

Substances

  • NAD
  • Sodium
  • Calcium