Molecular mechanics (MM4) study of fluorinated hydrocarbons

J Phys Chem A. 2006 Jun 8;110(22):7202-27. doi: 10.1021/jp060430x.

Abstract

A molecular mechanics study of small saturated hydrocarbons (up to C-6) substituted by up to six fluorines has been carried out with the MM4 force field. A parameter set has been developed for use in the calculation of bond lengths, bond angles, torsion angles, conformational energies, barriers to rotation, dipole moments, moments of inertia, and vibrational frequencies for these compounds. The results are mostly in fair to good agreement with experiment and ab initio calculations. The high electronegativity of fluorine leads to serious geometric consequences in these compounds, but these consequences can be dealt with adequately by suitable cross-terms in the force constant matrix, and by recognizing that some of the reference bond lengths and angles (l(0), theta(0)) and the corresponding stretching and bending constant parameters (k(s), k(theta)) that are usually thought of as constants must in fact be treated as functions of the electronegativity of the substituents. Additionally, the heavy mass of the fluorine (relative to the mass of hydrogen in alkanes) leads to large values for other cross-terms that were found to be unimportant in hydrocarbons. Conformational equilibria for polyfluorinated compounds are affected by the delta-two effect well-known in carbohydrates. A few larger fluorinated and polyfluorinated alkanes, including perfluoropropane, perfluorobutane, and Teflon, have also been studied.