Semen traits and metabolic and gonadotropic hormone profiles in ram lambs treated with glucose

Theriogenology. 1997 Sep;48(4):625-39. doi: 10.1016/s0093-691x(97)00279-3.

Abstract

Two experiments were conducted to examine reproductive and endocrine responses of ram lambs to exogenous glucose. In Experiment 1, three ram lambs (6 mo of age) received 100 ml ip of saline (0.9%) daily and three animals received 50 g glucose (100 ml 50% dextrose) daily for 18 d. In Experiment 2, ten lambs (5 per group) were treated similarly for 10 d. Serum samples were collected intensively before and after GnRH treatment on the last day of both experiments. After 15 d of glucose treatment in Experiment 1, treated rams weighed 58 kg compared with 68 kg for the controls (P = 0.08). A similar numerical trend was observed in Experiment 2, suggesting that intraperitoneal glucose decreases feed intake. In both experiments, 50 g of glucose induced a rapid elevation in serum glucose to greater than 120 mg/dl compared with 70 to 80 mg/dl for the controls (P < 0.05). Serum insulin rose to over 6 ng/ml in both trials in lambs receiving glucose compared with values of about 2 ng/ml for the controls (P < 0.01). Serum growth hormone was not altered (P > 0.10) by glucose in either experiment and IGF-1 was similar (P > 0.20) between groups in Experiment 2. Although serum concentrations of prolactin tended (P = 0.14) to be reduced by glucose treatment (64 +/- 21 ng/ml) compared with that of the controls (120 +/- 21 ng/ml) in Experiment 1, the opposite trend (P = 0.20) was observed in Experiment 2. Serum thyroxine was elevated (P = 0.08) in glucose-treated rams compared with that in controls in Experiment 2 but triiodothyronine concentrations were similar (P > 0.80) between groups. In Experiment 1, area under the curve (AUC) for LH after a GnRH challenge tended (P = 0.14) to be greater in glucose-treated (1,351 units) than in control (999 +/- 139 units) animals. The AUC for FSH (Experiment 1) did not differ (P = 0.30) between groups. The LH AUC in Experiment 2 was about 2,500 units for both groups (P = 0.80). The AUC for testosterone in Experiment 1, was 5,452 and 2,597 (+/- 1051) units for rams treated with 0 and 50 g glucose/d (P = 0.13), but testosterone AUC in Experiment 2 was similar between groups (P > 0.70). No effect of exogenous glucose was evident in either experiment for semen traits. Results suggest that 50 g ip glucose daily for 10 or 18 d induced large increases in serum insulin but other metabolic and reproductive hormones were not greatly influenced.