Polarization field effects at liquid-crystal-droplet-polymer interfaces

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041702. doi: 10.1103/PhysRevE.73.041702. Epub 2006 Apr 3.

Abstract

The influence of confinement (droplet size) and liquid crystal orientational order (smectic-A and nematic) on the interfacial polarization field effects [Maxwell-Wagner-Sillars (MWS) effect] existing in liquid-crystal-droplets-polymer systems is investigated by broadband dielectric spectroscopy and a forward transmittance measurement technique. A relaxation process observed in the low frequency domain of the dielectric spectrum has been associated with a MWS effect for both micron-size and submicron-size droplets. Using electro-optical measurements and numerical simulations of the field inside droplets, it is shown that a depolarization field takes place in the same frequency range as that determined by dielectric spectroscopy. Differential scanning calorimetry measurements allowed to estimate the phase-separated liquid crystal [4,4'-octylcyanobiphenyl (8CB)] fraction, which was found in the range of 55% for both micron-size and submicron-size droplets. X-ray diffraction experiments showed that smectic 8CB confined to micron-size cavities adopt bulklike properties, i.e., a partial bilayer structure, whereas in submicron-size droplets the layer spacing of the smectic phase is increased due to the strong bending deformations induced by the high curvature of the cavity walls.