Adipocyte apoptosis after burn injury is associated with altered fat metabolism

J Burn Care Res. 2006 May-Jun;27(3):367-76. doi: 10.1097/01.BCR.0000216777.94365.47.

Abstract

Burn injury often is associated with the abnormal lipid metabolism, including hyperlipidemia, desensitization to lipolytic responses to catecholamines, and reduction in the size of the white adipose tissue. Understanding the biological mechanisms for the decrease in fat mass despite desensitization to catecholamines is important both for the study of lipid metabolism and for the study of its relationship to concomitant insulin resistance. Using epididymal adipose tissue from adult male Sprague-Dawley rats after burn injury (n = 102) or sham-burn injury (n = 102), we tested the hypothesis that a whole-body burn injury causes apoptosis in that tissue. At 1, 3, and 7 days after 40% to 50% body burn injury to the rat, epidydimal adipose tissue was harvested and studied for apoptotic changes and lipolytic properties. For apoptosis, paraformaldehyde-fixed tissue sections were analyzed by in situ TdT-mediated dUTP-X nick-end labeling (TUNEL) staining, and tissue homogenates were also analyzed for DNA fragmentation by enzyme-linked immunoassay and ligation-mediated polymerase chain reaction ladder assay. Isolated adipocytes were stimulated with isoprotenerol, and glycerol production was measured as a reflector of effectiveness of lipolysis. Epididymal adipose tissue showed increased apoptosis manifested by the positive TUNEL staining and increased DNA fragmentation by enzyme-linked immunoassay at day 3 and 7 after burn injury. The DNA fragmentation was confirmed further by the ligation-mediated polymerase chain reaction ladder assay. This elevated DNA fragmentation persisted in the burned animals from day 3 until day 7 after burn injury, the end of observation period. Increase in apoptosis was correlated with decrease in DNA content and tissue weight in the epidydimis. At the functional level, a significant decrease in isoproterenol-induced lipolytic activity (glycerol production) was observed to almost 50% of control level at day 3 and 7 but was not decreased at day 1. Apoptosis of adipocytes may play a role in the altered lipid metabolism, including hyperlipidemia observed in burned subjects.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipocytes / metabolism
  • Adipocytes / pathology*
  • Adipose Tissue / metabolism*
  • Animals
  • Apoptosis*
  • Burns / metabolism
  • Burns / pathology*
  • Epididymis
  • In Situ Nick-End Labeling
  • Lipid Metabolism*
  • Lipolysis / physiology*
  • Male
  • Rats
  • Rats, Sprague-Dawley