Evidence for Hygrometric Pressurization in the Internal Gas Space of Spartina alterniflora

Plant Physiol. 1991 May;96(1):166-71. doi: 10.1104/pp.96.1.166.

Abstract

Higher pressure, up to several hundred pascal relative to ambient, is generated by hygrometric pressurization within the central hollow space of the stem in Spartina alterniflora. Dilution of oxygen and nitrogen by water vapor within the plant's internal gas space results in an influx of nitrogen and oxygen from the air and a net increase in the internal gas pressure at steady state. The nature of the pressure gradient suggests that small pores exist in the plant tissues. Moreover, the compact arrangement of leaf mesophyll cells creates a high resistance for the mass flow of gases and contributes to the higher pressure within leaves. After experimentally venting the internal pressure, outside air diffused through the basal area of the adaxial side of the leaves into the internal space and elevated pressure was restored.