Regulation of sulfate transport in filamentous fungi

Plant Physiol. 1970 Nov;46(5):720-7. doi: 10.1104/pp.46.5.720.

Abstract

Inorganic sulfate enters the mycelia of Aspergillus nidulans, Penicillium chrysogenum, and Penicillium notatum by a temperature-, energy-, pH-, ionic strength-, and concentration-dependent transport system ("permease"). Transport is unidirectional. In the presence of excess external sulfate, ATP sulfurylase-negative mutants will accumulate inorganic sulfate intracellularly to a level of about 0.04 m. The intracellular sulfate can be retained against a concentration gradient. Retention is not energy-dependent, nor is there any exchange between intracellular (accumulated) and extracellular sulfate. The sulfate permease is under metabolic control. Sulfur starvation of high methionine-grown mycelia results in about a 1000-fold increase in the specific sulfate transport activity at low external sulfate concentrations. l-Methionine is a metabolic repressor of the sulfate permease, while intracellular sulfate and possibly l-cysteine (or a derivative of l-cysteine) are feedback inhibitors. Sulfate transport follows hyperbolic saturation kinetics with a Michaelis constant (Km) value of 6 x 10(-5) to 10(-4)m and a V(max) (for maximally sulfurstarved mycelia) of about 5 micromoles per gram per minute. Refeeding sulfur-starved mycelia with sulfate or cysteine results in about a 10-fold decrease in the V(max) value with no marked change in the Km. Azide and dinitrophenol also reduce the V(max.).