Multiple evidence for an early age pro-oxidant state in Down Syndrome patients

Biogerontology. 2006 Aug;7(4):211-20. doi: 10.1007/s10522-006-9002-5. Epub 2006 Apr 13.

Abstract

Oxidative stress has been associated with Down syndrome (DS) and with its major phenotypic features, such as early ageing. In order to evaluate an in vivo pro-oxidant state, the following analytes were measured in a group of DS patients aged 2 months to 57 years: (a) leukocyte 8-hydroxy-2'-deoxyguanosine (8-OHdG); (b) blood glutathione; (c) plasma levels of: glyoxal (Glx) and methylglyoxal (MGlx); some antioxidants (uric acid, UA, ascorbic acid, AA and Vitamin E), and xanthine oxidase (XO) activity. A significant 1.5-fold increase in 8-OHdG levels was observed in 28 DS patients vs. 63 controls, with a sharper increase in DS patients aged up to 30 years. The GSSG:GSH x 100 ratio was significantly higher in young DS patients (< 15 years), in contrast to DS patients aged >or=15 years that showed a significant decrease in the GSSG:GSH x 100 ratio ratio vs. controls of the respective age groups. Plasma Glx levels were significantly higher in young DS patients, whereas no significant difference was detected in DS patients aged >or=15 years. Unlike Glx, the plasma levels of MGlx were found to be significantly lower in DS patients vs. controls. A significant increase was observed in plasma levels of UA in DS patients that could be related to an increased plasma XO activity in DS patients. The plasma concentrations of AA were also increased in young (< 15 years) DS patients, but not in older patients vs. controls in the same age range. The levels of Vitamin E in DS patients did not differ from the values determined in control donors. The evidence for a multiple pro-oxidant state in young DS patients supports the role of oxidative stress in DS phenotype, with relevant distinctions according to patients' ages.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Age Factors
  • Aging / metabolism*
  • Child
  • Child, Preschool
  • Down Syndrome / metabolism*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Oxidative Stress*
  • Reactive Oxygen Species / metabolism*

Substances

  • Reactive Oxygen Species