Design criteria for transparent single-wall carbon nanotube thin-film transistors

Nano Lett. 2006 Apr;6(4):677-82. doi: 10.1021/nl052406l.

Abstract

A study based on two-dimensional percolation theory yielding quantitative parameters for optimum connectivity of transparent single-wall carbon nanotube (SWNT) thin films is reported. Optimum SWNT concentration in the filtrated solution was found to be 0.1 mg/L with a volume of 30 mL. Such parameters lead to SWNT fractions in the films of approximately Phi = 1.8 x 10(-3), much below the metallic percolation threshold, which is found to be approximately PhiC = 5.5 x 10(-3). Therefore, the performance of transparent carbon nanotube thin-film transistors is limited by the metallic SWNTs, even below their percolation threshold. We show how this effect is related to hopping or tunneling between neighboring metallic tubes.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation
  • Computer-Aided Design*
  • Crystallization / methods*
  • Electric Conductivity
  • Electrochemistry / instrumentation*
  • Electrochemistry / methods
  • Equipment Design
  • Equipment Failure Analysis
  • Materials Testing
  • Models, Chemical*
  • Nanotechnology / instrumentation*
  • Nanotechnology / methods
  • Nanotubes, Carbon / chemistry*
  • Nanotubes, Carbon / ultrastructure*
  • Particle Size
  • Transistors, Electronic*

Substances

  • Nanotubes, Carbon