Theoretical study of the effects of F to Cl chemical substitution on the electronic structure and the luminescence properties of Cs2GeF6:Os4+ and Cs2ZrCl6:Os4+ materials

J Chem Phys. 2006 Mar 28;124(12):124315. doi: 10.1063/1.2180772.

Abstract

It has been experimentally determined that Cs2ZrCl6:Os4+ shows luminescence and up-converted luminescence from the highest t(2g) (4) excited level 2 A1g(1A1g), whereas Cs2GeF6:Os4+ 2 A1g(1A1g) does not luminescence at all. Ab initio quantum chemical calculations on these materials are presented here and show that the variation of the energy gap between the t2g 4 and t2g 3 eg 1 manifolds with F to Cl chemical substitution is a key factor to interpret the experimental findings. This energy gap is calculated to be some 1500 cm(-1) (approximately 2nua1g) in the fluoride host, whereas it is about 3300 cm(-1) (approximately 9nua1g) in the chloride host. The calculated values for the ground state totally symmetric vibrational frequency nu(a1g) are 626 cm(-1) (Cs2GeF6:Os4+) and 355 cm(-1) (Cs2ZrCl6:Os4+), in good agreement with the available experimental data. Geometrical structure of (OsX6)2- clusters (X=F,Cl) embedded in Cs2GeF6 and Cs2ZrCl6 lattices is calculated as well. New assignments for some spectral features based in the results of our calculations are proposed.