Layered photoconductive polymers: anisotropic morphology and correlation with photorefractive reflection grating response

J Chem Phys. 2006 Mar 14;124(10):104705. doi: 10.1063/1.2180768.

Abstract

We demonstrate that the mesophase morphology of the layered photorefractive polymers has a substantial influence on the photorefractive properties, especially in reflection grating geometries with a minimal grating spacing. The layered morphology of the photoconductive polymers based on poly(p-phenyleneterephthalate) (PPT) with pendent carbazole (CZ) groups can be efficiently controlled by changing their molecular weight. Photorefractive composites based on PPT-CZ polymers with different chromophores, diethylaminodicyanostyrene (DDCST) or piperidinodicyanostyrene (PDCST), show anisotropic morphology induced by the squeezing flow during sample preparation. The contributions of the highest occupied molecular orbital levels of the chromophores and of the degree and anisotropy of the layered crystalline structure to the charge transport and trapping result in a high efficiency of the PDCST composite and a similar response speed in DDCST and PDCST composites in the reflection grating geometry, although of about six times lower photoconductivity in the less-ordered PDCST composite.