Geometries and electronic properties of the neutral and charged rare earth Yb-doped Si(n) (n = 1-6) clusters: a relativistic density functional investigation

J Phys Chem A. 2006 Mar 23;110(11):4071-9. doi: 10.1021/jp055551w.

Abstract

The neutral and charged YbSi(n) (n = 1-6) clusters considering different spin configurations have been systematically investigated by using the relativistic density functional theory with generalized gradient approximation. The total bonding energies, equilibrium geometries, Mulliken populations (MP), Hirshfeld charges (HC), fragmentation energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps are calculated and discussed. The optimized geometries indicate that the most stable YbSi(n) (n = 1-6) clusters keep basically the analogous frameworks as the low-lying Si(n)(+1) clusters, while the charged species deviate from their neutral counterparts, and that the doped Yb tends to occupy the substitutional site of the neutral and charged YbSi(n) isomers. The relative stabilities are investigated in terms of the calculated fragmentation energies, exhibiting enhanced stabilities for the remarkably stable neutral and charged YbSi2 and YbSi5 clusters. Furthermore, the calculated MP and HC values show that the charges of the neutral and charged YbSi(n) clusters transfer from the Yb atom to Si(n) atoms and the Yb atom acts as an electron donor, and that the f orbitals of the Yb atom in the neutral and charged YbSi(n) clusters behave as core without involvement in chemical bonding. The calculated HOMO-LUMO gaps indicate that the YbSi2 and YbSi4+ clusters have stronger chemical stabilities. Comparisons of the Yb-doped Si(n) (n = 1-6) with available theoretical results of transition-metal-doped silicon clusters are made. The growth pattern is investigated also.