High Nitrate Concentrations in Vacuolate, Autotrophic Marine Beggiatoa spp

Appl Environ Microbiol. 1996 Mar;62(3):954-8. doi: 10.1128/aem.62.3.954-958.1996.

Abstract

Massive accumulations of very large Beggiatoa spp. are found at a Monterey Canyon cold seep and at Guaymas Basin hydrothermal vents. Both environments are characterized by high sediment concentrations of soluble sulfide and low levels of dissolved oxygen in surrounding waters. These filamentous, sulfur-oxidizing bacteria accumulate nitrate intracellularly at concentrations of 130 to 160 mM, 3,000- to 4,000-fold higher than ambient levels. Average filament widths range from 24 to 122 (mu)m, and individual cells of all widths possess a central vacuole. These findings plus recent parallel discoveries for Thioploca spp. (H. Fossing, V. A. Gallardo, B. B. Jorgensen, M. Huttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Forster, R. N. Glud, J. K. Gundersen, J. Kuver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa, Nature (London) 374:713-715, 1995) suggest that nitrate accumulation may be a universal property of vacuolate, filamentous sulfur bacteria. Ribulose bisphosphate carboxylase-oxygenase and 2-oxoglutarate dehydrogenase activities in the Beggiatoa sp. from Monterey Canyon suggest in situ autotrophic growth of these bacteria. Nitrate reductase activity is much higher in the Monterey Beggiatoa sp. than in narrow, laboratory-grown strains of Beggiatoa spp., and the activity is found primarily in the membrane fraction, suggesting that the vacuolate Beggiatoa sp. can reduce nitrate coupled to electron flow through an electron transport system. Nitrate-concentrating and respiration potentials of these chemolithoautotrophs suggest that the Beggiatoa spp. described here are an important link between the sulfur, nitrogen, and carbon cycles at the Monterey Canyon seeps and the Guaymas Basin hydrothermal vents where they are found.