Global analysis of X-chromosome dosage compensation

J Biol. 2006;5(1):3. doi: 10.1186/jbiol30. Epub 2006 Feb 16.

Abstract

Background: Drosophila melanogaster females have two X chromosomes and two autosome sets (XX;AA), while males have a single X chromosome and two autosome sets (X;AA). Drosophila male somatic cells compensate for a single copy of the X chromosome by deploying male-specific-lethal (MSL) complexes that increase transcription from the X chromosome. Male germ cells lack MSL complexes, indicating that either germline X-chromosome dosage compensation is MSL-independent, or that germ cells do not carry out dosage compensation.

Results: To investigate whether dosage compensation occurs in germ cells, we directly assayed X-chromosome transcripts using DNA microarrays and show equivalent expression in XX;AA and X;AA germline tissues. In X;AA germ cells, expression from the single X chromosome is about twice that of a single autosome. This mechanism ensures balanced X-chromosome expression between the sexes and, more importantly, it ensures balanced expression between the single X chromosome and the autosome set. Oddly, the inactivation of an X chromosome in mammalian females reduces the effective X-chromosome dose and means that females face the same X-chromosome transcript deficiency as males. Contrary to most current dosage-compensation models, we also show increased X-chromosome expression in X;AA and XX;AA somatic cells of Caenorhabditis elegans and mice.

Conclusion: Drosophila germ cells compensate for X-chromosome dose. This occurs by equilibrating X-chromosome and autosome expression in X;AA cells. Increased expression of the X chromosome in X;AA individuals appears to be phylogenetically conserved.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / metabolism
  • Dosage Compensation, Genetic*
  • Drosophila melanogaster / genetics*
  • Drosophila melanogaster / metabolism
  • Female
  • Gene Dosage
  • Gene Expression Profiling
  • Male
  • Mice
  • Oligonucleotide Array Sequence Analysis
  • Ovary / metabolism
  • Testis / metabolism
  • Transcription, Genetic
  • X Chromosome*