Discordant regulation of hepatic IGF-I mRNA and circulating IGF-I during compensatory growth in a teleost, the hybrid striped bass (Morone chrysopsxMorone saxatilis)

Gen Comp Endocrinol. 2006 Jun;147(2):196-205. doi: 10.1016/j.ygcen.2005.12.020. Epub 2006 Feb 28.

Abstract

Compensatory growth (CG) is a period of growth that exceeds normal rates after animals are alleviated of certain growth-stunting conditions. Little is known, however, about the endocrine control of CG in teleosts. So, our aim was to induce CG in juvenile hybrid striped bass (HSB, Morone chrysopsxMorone saxatilis) through manipulations in feeding regimen, and then determine whether changes in circulating insulin-like growth factor-I (IGF-I) and hepatic IGF-I gene expression accompany the CG response. A considerable catabolic state was induced in HSB fed a total of two times over 4 weeks (once each in the 2nd and 3rd week). Negative energy balance was evidenced through weight loss (-3.4% BW) and a significant drop in hepatosomatic index (HSI) from a value of 3.71 to 1.46. Upon realimentation, in which HSB were fed ad libitum 2x/day, a significant CG response was observed over a 4-week period. The CG response was characterized by an elevated specific growth rate, hyperphagia, restoration of the HSI and an improvement in feed conversion, all relative to controls that were fed ad libitum 2x/day throughout the experiment. Moreover, the CG response and catabolic state preceding it were marked by a discordant regulation in the expression of hepatic IGF-I mRNA and plasma IGF-I levels, the latter parameter paralleling changes in growth (r(2)=0.56, P<001). The catabolic state was accompanied by an 82% increase in hepatic IGF-I mRNA while levels of plasma IGF-I were significantly depressed relative to controls. During the subsequent CG response, however, hepatic IGF-I mRNA decreased by 61% while plasma IGF-I increased by 86%. The underlying mechanisms for this inverse regulation of hepatic IGF-I mRNA and circulating IGF-I are uncertain, but may reflect alterations in hepatic IGF-I mRNA production, stability, and translation such that hepatic IGF-I mRNA is accumulated during periods of catabolism and then rapidly translated and released into circulation when conditions improve. These results suggest that CG can be induced in HSB following a sufficient catabolic state and that systemic IGF-I may be an important mediator of the accelerated growth rate characteristic of CG.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Nutritional Physiological Phenomena
  • Animals
  • Bass / growth & development*
  • Bass / metabolism
  • Diet*
  • Diet, Reducing
  • Feeding Behavior*
  • Gene Expression Regulation
  • Hyperphagia / metabolism
  • Insulin-Like Growth Factor I / genetics
  • Insulin-Like Growth Factor I / metabolism*
  • Liver / metabolism*
  • Liver / physiology
  • Organ Size
  • RNA, Messenger / metabolism

Substances

  • RNA, Messenger
  • Insulin-Like Growth Factor I