Transverse light guides in microstructured optical fibers

Opt Lett. 2006 Feb 1;31(3):314-6. doi: 10.1364/ol.31.000314.

Abstract

A novel class of microstructured optical fiber coupler is introduced that operates by resonant, rather than proximity, energy transfer by means of transverse light guides built into a fiber cross section. Such a design permits significant spatial separation between interacting fibers, which, in turn, eliminates intercore cross talk owing to proximity coupling. A controllable energy transfer between the cores is then achieved by localized and highly directional transmission through a transverse light guide. The main advantage of this coupling scheme is its inherent scalability, as one can integrate additional fiber cores into the existing fiber cross section simply by placing the cores far enough from the existing optical circuitry to prevent proximity cross talk and then making the necessary intercore connections with transverse light wires, in direct analogy with on-chip electronics integration.