Patient specific treatment verifications for helical tomotherapy treatment plans

Med Phys. 2005 Dec;32(12):3793-800. doi: 10.1118/1.2134929.

Abstract

We performed two-dimensional treatment verifications for ten patients planned and treated with helical tomotherapy. The treatment verification consisted of a film measurement as well as point dose measurements made with an ion chamber. The agreement between the calculated and the measured film dose distributions was evaluated with the gamma index calculated for three sets of criteria (2 mm and 2%, 4 mm and 3%, and 3 mm and 5%) as recommended in the literature. Good agreement was found between measured and calculated distributions without any need of normalization of the dose data but with dose map registration using reference marks. In this case, 69.8 +/- 17.2%, 92.6 +/- 9.0%, and 93.4 +/- 8.5% passed the 2 mm and 2%, 4 mm and 3%, and 3 mm and 5% criteria, respectively. Agreement was excellent when both normalization and manual registration of the dose maps was employed. In this case 91.2 +/- 5.6%, 99.0 +/- 1.4%, and 99.5 +/- 0.8% passed the 2 mm and 2%, 4 mm and 3%, and 3 mm and 5% criteria, respectively. The mean percent discrepancy for the point dose measurements was -0.5 +/- 1.1%, -2.4 +/- 3.7%, -1.1 +/- 7.3% for the high dose, low dose, and critical structure point, respectively. Three criteria for a satisfactory treatment verification in the high dose regions of a plan were established. For the un-normalized reference mark registered data 80% of pixels must pass the 3 mm and 5% criteria. For the normalized and manually registered data, 80% must pass the 2 mm and 2% criteria, and the point dose measurement must be within 2% of the calculated dose. All low dose region/critical structure point dose measurements were evaluated on a patient by patient basis. The criteria we recommend can be useful for the routine evaluation of treatment plans for tomotherapy systems.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biophysical Phenomena
  • Biophysics
  • Humans
  • Lasers
  • Neoplasms / radiotherapy
  • Phantoms, Imaging
  • Radiometry / statistics & numerical data
  • Radiotherapy Planning, Computer-Assisted / statistics & numerical data*
  • Radiotherapy, Intensity-Modulated / statistics & numerical data*