Preparation and characterization of vanadium oxide deposited on thermally stable mesoporous titania

J Phys Chem B. 2006 Jan 19;110(2):948-55. doi: 10.1021/jp053576p.

Abstract

Vanadium oxide was deposited on mesoporous titania by the molecular designed dispersion method to investigate the potential properties of these catalysts. Mesoporous titania was synthesized following the evaporation-induced self-assembly (EISA) method with a subsequent treatment with ammonia to increase the thermal stability. As a result, the mesoporous titania obtained shows a high surface area (approximately 350 m2/g) and high stability. Vanadium oxide was deposited by the MDD method using a vanadyl acetylacetonate complex that was transformed into VOx after a controlled calcination in air flow at 300 degrees C. The mesostructure and porosity characteristics of titania remain even until the maximum V-loading was reached (0.4 mmol/g), as it was shown by N2 sorption measurements at -196 degrees C. The catalysts were characterized by chemical analysis, Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS), UV-vis diffuse reflectance (DR), and Fourier transform Raman spectroscopy. Raman spectra showed isolated V species for the different V-containing catalysts. Furthermore, UV-vis-DR revealed a higher contribution of polymeric species as the V loading increases. The VOx/mesoporous titania catalysts were highly active in the selective catalytic reduction of NOx. A high activity in the NO conversion was observed, which increases with increasing metal loading.