Survey and significance of filamentous fungi from tap water

Int J Hyg Environ Health. 2006 May;209(3):257-64. doi: 10.1016/j.ijheh.2005.12.001. Epub 2006 Feb 3.

Abstract

Fungi in drinking water are involved in the production of tastes and odours in water. Health problems are possible, originating from mycotoxins, animal pathogens and allergies. This report concerns the surveillance of mesophilic fungi in tap water and assessment of their potential for causing problems. The methods for the determination of the filamentous fungi (ff) were filtering, swabbing and baiting. Tap water, half-strength corn meal, neopeptone-glucose rose Bengal aureomycin (NGRBA) and oomycete selective agars for the enumeration of colony forming units (cfu) were used. Samples were taken consecutively over 16 months. Filtration and NGRBA gave the highest ff counts. A total of 340 taxa were isolated. There appeared to be a negative correlation between bacterial and yeast (b/y) and ff counts. Highest counts were found in winter months for ff and in the warmer months for b/y. Penicillium (40.6%) and Acremonium (38.8%) were the most frequently isolated ff. There was a difference in the pattern of isolation of the key taxa with season: penicillia predominated in early summer and Acremonium in winter. P. expansum was isolated in high numbers in May 2004. This species is associated with the production of the mycotoxin patulin and the odour secondary metabolite geosmin. P. brevicompactum was detected throughout the sampling period and is known to produce the immunosuppressive drug mycophenolic acid. Acremonium is associated with ocentol production which is responsible for bad tastes and flavours. The remaining taxa were Phialophora sp. (4.1%), Cladosporium sp. (3.5%), Rhizopus stolonifer (2.9%), Chaetomium sp. (0.6%), Alternaria sp. (0.3%), Aspergillus sp. (0.3%), mycelia sterilia (2.6%) and unidentified (6.2%). It is emphasised that few Aspergillus and no Fusarium strains were isolated. Rhizopus stolonifer was obtained. However, none of the fungi isolated at mesophilic temperature used could be described as being involved with pathogenicity per se.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Colony Count, Microbial
  • Environmental Monitoring / methods*
  • Filtration
  • Fungi* / classification
  • Fungi* / growth & development
  • Fungi* / pathogenicity
  • Humans
  • Longitudinal Studies
  • Portugal
  • Seasons
  • Water Microbiology*
  • Water Supply / analysis*