Compression of fractionated sun-cured and dehydrated alfalfa chops into cubes--specific energy models

Bioresour Technol. 2007 Jan;98(1):38-45. doi: 10.1016/j.biortech.2005.11.032. Epub 2006 Jan 25.

Abstract

The objective of this study was to determine the specific energy requirements for the compression of fractionated sun-cured and dehydrated alfalfa chops, when subjected to different pressures and holding times. The compression behavior of fractionated sun-cured and dehydrated alfalfa chops was studied using a single cubing unit capable of making one cube in a single stroke of the plunger. The cube die dimensions were 30 mm x 30 mm in cross-section and an effective depth of compression of 0.38 m. The initial moisture content of dehydrated and sun-cured chops were 6% and 7% (wb), respectively. A stack of two sieves (instead of five) was used along with a pan to achieve leaf and stem separation. The nominal opening sizes of two sieves with square holes were 3.96 and 1.17 mm, respectively. Leaf and stem fractions were combined later to obtain five different samples each for sun-cured and dehydrated alfalfa with leaf content ranging from 0% to 100% by mass in increments of 25%. The chop moisture content and preheat temperature before compaction was 10% (wb) and 75 degrees C, respectively. The cube die temperature was maintained at 90+/-5 degrees C. The mass of chops used for making each cube was 23+/-02 g. A hydraulic press was used to apply 9.0, 12.0 and 14.0 MPa of pressures through a plunger. After compression, the plunger was held in place for 10 and 30s, before the compacted forage was extracted. Empirical equations were fitted to the data relating specific energy for cube making to pressure, residence time, and leaf content.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomass
  • Conservation of Energy Resources*
  • Medicago sativa*
  • Pressure