Intracellular sodium increase and susceptibility to ischaemia in hearts from type 2 diabetic db/db mice

Diabetologia. 2006 Mar;49(3):598-606. doi: 10.1007/s00125-005-0091-5. Epub 2006 Jan 20.

Abstract

Aims/hypothesis: An important determinant of sensitivity to ischaemia is altered ion homeostasis, especially disturbances in intracellular Na(+) (Na(i)(+)) handling. As no study has so far investigated this in type 2 diabetes, we examined susceptibility to ischaemia-reperfusion in isolated hearts from diabetic db/db and control db/+ mice and determined whether and to what extent the amount of (Na(i)(+)) increase during a transient period of ischaemia could contribute to functional alterations upon reperfusion.

Methods: Isovolumic hearts were exposed to 30-min global ischaemia and then reperfused. (23)Na nuclear magnetic resonance (NMR) spectroscopy was used to monitor[Formula: see text] and (31)P NMR spectroscopy to monitor intracellular pH (pH(i)).

Results: A higher duration of ventricular tachycardia and the degeneration of ventricular tachycardia into ventricular fibrillation were observed upon reperfusion in db/db hearts. The recovery of left ventricular developed pressure was reduced. The increase in[Formula: see text] induced by ischaemia was higher in db/db hearts than in control hearts, and the rate of pH(i) recovery was increased during reperfusion. The inhibition of Na(+)/H(+) exchange by cariporide significantly reduced (Na(i)(+)) gain at the end of ischaemia. This was associated with a lower incidence of ventricular tachycardia in both heart groups, and with an inhibition of the degeneration of ventricular tachycardia into ventricular fibrillation in db/db hearts.

Conclusions/interpretation: These findings strongly support the hypothesis that increased (Na(i)(+)) plays a causative role in the enhanced sensitivity to ischaemia observed in db/db diabetic hearts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arrhythmias, Cardiac / etiology
  • Arrhythmias, Cardiac / metabolism
  • Diabetes Mellitus, Type 2 / metabolism*
  • Diabetes Mellitus, Type 2 / pathology
  • Diabetes Mellitus, Type 2 / physiopathology
  • Disease Susceptibility / metabolism
  • Disease Susceptibility / pathology
  • Hydrogen-Ion Concentration
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Myocardial Ischemia / complications
  • Myocardial Ischemia / metabolism*
  • Myocardial Ischemia / pathology
  • Myocardial Ischemia / physiopathology
  • Sodium / metabolism*
  • Ventricular Pressure

Substances

  • Sodium