High-pressure x-ray diffraction and Raman spectroscopy of ice VIII

J Chem Phys. 2006 Jan 14;124(2):024502. doi: 10.1063/1.2140277.

Abstract

In situ high-pressure/low-temperature synchrotron x-ray diffraction and optical Raman spectroscopy were used to examine the structural properties, equation of state, and vibrational dynamics of ice VIII. The x-ray measurements show that the pressure-volume relations remain smooth up to 23 GPa at 80 K. Although there is no evidence for structural changes to at least 14 GPa, the unit-cell axial ratio ca undergoes changes at 10-14 GPa. Raman measurements carried out at 80 K show that the nu(Tz)A(1g)+nuT(x,y)E(g) lattice modes for the Raman spectra of ice VIII in the lower-frequency regions (50-800 cm(-1)) disappear at around 10 GPa, and then a new peak of approximately 150 cm(-1) appears at 14 GPa. The combined data provide evidence for a transition beginning near 10 GPa. The results are consistent with recent synchrotron far-IR measurements and theoretical calculations. The decompressed phase recovered at ambient pressure transforms to low-density amorphous ice when heated to approximately 125 K.