Precision measurements from very-large scale aerial digital imagery

Environ Monit Assess. 2006 Jan;112(1-3):293-307. doi: 10.1007/s10661-006-1070-0.

Abstract

Managers need measurements and resource managers need the length/width of a variety of items including that of animals, logs, streams, plant canopies, man-made objects, riparian habitat, vegetation patches and other things important in resource monitoring and land inspection. These types of measurements can now be easily and accurately obtained from very large scale aerial (VLSA) imagery having spatial resolutions as fine as 1 millimeter per pixel by using the three new software programs described here. VLSA images have small fields of view and are used for intermittent sampling across extensive landscapes. Pixel-coverage among images is influenced by small changes in airplane altitude above ground level (AGL) and orientation relative to the ground, as well as by changes in topography. These factors affect the object-to-camera distance used for image-resolution calculations. 'ImageMeasurement' offers a user-friendly interface for accounting for pixel-coverage variation among images by utilizing a database. 'LaserLOG' records and displays airplane altitude AGL measured from a high frequency laser rangefinder, and displays the vertical velocity. 'Merge' sorts through large amounts of data generated by LaserLOG and matches precise airplane altitudes with camera trigger times for input to the ImageMeasurement database. We discuss application of these tools, including error estimates. We found measurements from aerial images (collection resolution: 5-26 mm/pixel as projected on the ground) using ImageMeasurement, LaserLOG, and Merge, were accurate to centimeters with an error less than 10%. We recommend these software packages as a means for expanding the utility of aerial image data.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Altitude
  • Environmental Monitoring / instrumentation*
  • Environmental Monitoring / methods*
  • Image Enhancement
  • Image Processing, Computer-Assisted*
  • Sensitivity and Specificity
  • Software*