The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion

Heart Rhythm. 2006 Jan;3(1):58-66. doi: 10.1016/j.hrthm.2005.09.018.

Abstract

Background: The correlation between spontaneous calcium oscillations (S-CaOs) and arrhythmogenesis has been investigated in a number of theoretical and experimental in vitro models. There is an obvious lack of studies that directly investigate how the kinetics of S-CaOs correlates with a specific arrhythmia in the in vivo heart.

Objectives: The purpose of the study is to investigate the correlation between the kinetics of S-CaOs and arrhythmogenesis in the intact heart using an experimental model of ischemia/reperfusion (I/R).

Methods: Perfused Langendorff guinea pig (GP) hearts were subjected to global I/R (10-15 minutes/10-15 minutes). The heart was stained with a voltage-sensitive dye (RH237) and loaded with a Ca2+ indicator (Rhod-2 AM). Membrane voltage (Vm) and intracellular calcium transient (Ca(i)T) were simultaneously recorded with an optical mapping system of two 16 x 16 photodiode arrays. S-CaOs were considered to arise from a localized focal site within the mapped surface when these preceded the associated membrane depolarizations by 2-15 ms.

Results: In 135 episodes of ventricular arrhythmias from 28 different GP experiments, 23 were linked to S-CaOs that were considered to arise from or close to the mapped epicardial window. Self-limited or sustained S-CaOs had a cycle length of 130-430 ms and could trigger propagated ventricular depolarizations. Self-limited S-CaOs that followed the basic beat action potential (AP)/Ca(i)T closely resembled phase 3 early afterdepolarizations. Fast S-CaOs could remain confined to a localized site (concealed) or exhibit varying conduction patterns. This could manifest as (1) an isolated premature beat (PB), bigeminal, or trigeminal rhythm; (2) ventricular tachycardia (VT) when a regular 2:1 conduction from the focal site develops; or (3) ventricular fibrillation (VF) when a complex conduction pattern results in wave break and reentrant excitation.

Conclusions: The study examined, for the first time in the intact heart, the correlation between the kinetics of focal S-CaOs during I/R and arrhythmogenesis. S-CaOs may remain concealed or manifest as PBs, VT, or VF. A "benign looking" PB during I/R may represent "the tip of the iceberg" of an underlying potentially serious arrhythmic mechanism.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Arrhythmias, Cardiac / physiopathology*
  • Calcium / metabolism*
  • Calcium Signaling / physiology*
  • Disease Models, Animal
  • Electrophysiology
  • Guinea Pigs
  • Heart Conduction System / physiopathology
  • Kinetics
  • Male
  • Myocardial Reperfusion Injury / physiopathology*
  • Optics and Photonics

Substances

  • Calcium