Static and dynamic quenching of Ru(II) polypyridyl excited states by iodide

Inorg Chem. 2006 Jan 9;45(1):362-9. doi: 10.1021/ic051467j.

Abstract

The metal-to-ligand charge-transfer (MLCT) excited states of Ru(bpy)(2)(deeb)(PF(6))(2), where bpy is 2,2-bipyridine and deeb is 4,4'-(CO(2)CH(2)CH(3))(2)-2,2'-bipyridine, in dichloromethane were found to be efficiently quenched by iodide at room temperature. The ionic strength dependence of the UV-visible absorption spectra gave evidence for ion pairing. Iodide was found to quench the excited states by static and dynamic mechanisms. Stern-Volmer and Benesi-Hildebrand analysis of the spectral data provided a self-consistent estimate of the iodide-Ru(bpy)(2)(deeb)(2+) adduct in dichloromethane, K = 59 700 M(-1). Transient absorption studies clearly demonstrated an electron-transfer quenching mechanism with transient formation of I(2)(*)(-) in high yield, phi = 0.25 for 355 or 532 nm excitation. For Ru(bpy)(2)(deeb)(PF(6))(2) in acetonitrile, similar behavior could be observed at higher iodide concentrations than that required in dichloromethane. The parent Ru(bpy)(3)(2+) compound also ion pairs with iodide in CH(2)Cl(2), and light excitation gave a higher I(2)(*)(-) yield, phi = 0.50. X-ray crystallographic, IR, and Raman data gave evidence for interactions between iodide and the coordinated deeb ligand in the solid state.