A review on the integration of artificial intelligence into coastal modeling

J Environ Manage. 2006 Jul;80(1):47-57. doi: 10.1016/j.jenvman.2005.08.012. Epub 2005 Dec 5.

Abstract

With the development of computing technology, mechanistic models are often employed to simulate processes in coastal environments. However, these predictive tools are inevitably highly specialized, involving certain assumptions and/or limitations, and can be manipulated only by experienced engineers who have a thorough understanding of the underlying theories. This results in significant constraints on their manipulation as well as large gaps in understanding and expectations between the developers and practitioners of a model. The recent advancements in artificial intelligence (AI) technologies are making it possible to integrate machine learning capabilities into numerical modeling systems in order to bridge the gaps and lessen the demands on human experts. The objective of this paper is to review the state-of-the-art in the integration of different AI technologies into coastal modeling. The algorithms and methods studied include knowledge-based systems, genetic algorithms, artificial neural networks, and fuzzy inference systems. More focus is given to knowledge-based systems, which have apparent advantages over the others in allowing more transparent transfers of knowledge in the use of models and in furnishing the intelligent manipulation of calibration parameters. Of course, the other AI methods also have their individual contributions towards accurate and reliable predictions of coastal processes. The integrated model might be very powerful, since the advantages of each technique can be combined.

Publication types

  • Review

MeSH terms

  • Artificial Intelligence*
  • Computing Methodologies*
  • Decision Support Techniques*
  • Equipment and Supplies
  • Expert Systems
  • Feedback*
  • Humans
  • Models, Biological
  • Neural Networks, Computer