Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus

Hippocampus. 2006;16(4):345-60. doi: 10.1002/hipo.20146.

Abstract

Low frequency-induced short-term synaptic plasticity was investigated in hippocampal slices with 60-electrode recording array. Remarkably, the application of low-frequency stimulation (1 Hz) for a short duration (3-5 min) resulted in the induction of a slow-onset long-term potentiation (LTP) in the immediate vicinity of the stimulated electrode. This phenomenon was observed exclusively in the CA1 subfield, neither in the CA3 area nor in the dentate gyrus. The induction of this slow-onset LTP required neither N-methyl-D-aspartate (NMDA) nor non-NMDA ionotropic receptor activation but was strongly dependent on metabotropic glutamate mGlu(5) receptor stimulation and [Ca(2+)]i increase. In addition, this form of synaptic plasticity was associated with an increase in cAMP concentration and required protein kinase A activation. Paired-pulse facilitation ratio and presynaptic fiber volley amplitude were unaffected when this LTP was triggered, suggesting the involvement of postsynaptic modifications. Although mitogen activated protein kinase pathway was stimulated after the application of low frequency, the induction and maintenance of this slow-onset LTP were not dependent on the activation of this intracellular pathway. The direct activation of adenylyl cyclase with forskolin also induced a synaptic enhancement displaying similar features. This new form of LTP could represent the mnesic engram of mild and repetitive stimulation involved in latent learning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenylyl Cyclases / drug effects
  • Adenylyl Cyclases / metabolism
  • Animals
  • Calcium Signaling / drug effects
  • Calcium Signaling / physiology
  • Colforsin / pharmacology
  • Cyclic AMP / metabolism
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Electric Stimulation / methods
  • Enzyme Inhibitors / pharmacology
  • Excitatory Amino Acid Antagonists / pharmacology
  • Excitatory Postsynaptic Potentials / drug effects
  • Excitatory Postsynaptic Potentials / physiology
  • Female
  • Hippocampus / drug effects
  • Hippocampus / metabolism*
  • Learning / physiology
  • Long-Term Potentiation / drug effects
  • Long-Term Potentiation / physiology*
  • MAP Kinase Signaling System / drug effects
  • MAP Kinase Signaling System / physiology
  • Male
  • Memory / physiology
  • Neural Pathways / drug effects
  • Neural Pathways / metabolism
  • Organ Culture Techniques
  • Presynaptic Terminals / drug effects
  • Presynaptic Terminals / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Metabotropic Glutamate 5
  • Receptors, Metabotropic Glutamate / drug effects
  • Receptors, Metabotropic Glutamate / metabolism*
  • Synapses / drug effects
  • Synapses / metabolism*
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology*

Substances

  • Enzyme Inhibitors
  • Excitatory Amino Acid Antagonists
  • Receptor, Metabotropic Glutamate 5
  • Receptors, Metabotropic Glutamate
  • Colforsin
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinases
  • Adenylyl Cyclases