Assembly of high-density lipoprotein

Arterioscler Thromb Vasc Biol. 2006 Jan;26(1):20-7. doi: 10.1161/01.ATV.0000195789.39418.e8. Epub 2005 Nov 10.

Abstract

Mammalian somatic cells do not catabolize cholesterol and need to export it for its homeostasis at the levels of cells and whole bodies. This reaction may reduce intracellularly accumulated cholesterol in excess and would contribute to prevention or regression of the initial stage of atherosclerosis. High-density lipoprotein (HDL) is thought to play a main role in this reaction, and 2 independent mechanisms are proposed for this reaction. First, cholesterol is exchanged in a nonspecific physicochemical manner between cell surface and extracellular lipoproteins, and cholesterol esterification on HDL provides a driving force for net removal of cell cholesterol. Second, apolipoproteins directly interact with cells and generate HDL by removing cellular phospholipid and cholesterol. This reaction is a major source of plasma HDL and is mediated by a membrane protein, ABCA1. Lipid-free or lipid-poor helical apolipoproteins primarily recruit cellular phospholipid to assemble HDL particles, and cholesterol enrichment in these particles is regulated independently. ABCA1 is a rate-limiting factor of the HDL assembly and is regulated by transcriptional factors and posttranscriptional factors. Posttranscriptional regulation of ABCA1 includes modulation of its calpain-mediated degradation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • ATP Binding Cassette Transporter 1
  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism*
  • Animals
  • Atherosclerosis / metabolism*
  • Cholesterol, HDL / metabolism*
  • Homeostasis / physiology*
  • Humans

Substances

  • ABCA1 protein, human
  • ATP Binding Cassette Transporter 1
  • ATP-Binding Cassette Transporters
  • Cholesterol, HDL