Static versus prospective gated non-breath hold volumetric MDCT imaging of the lungs

Acad Radiol. 2005 Nov;12(11):1371-84. doi: 10.1016/j.acra.2005.08.014.

Abstract

Rationale and objectives: The study's aim is to establish lung-imaging methods that provide for the ability to image the lung under dynamic non-breath hold conditions while providing "virtual breath hold" quantifiable volumetric image data sets. Static breath hold images are used as the gold standard for evaluating these virtual breath hold images in both a phantom and sheep.

Materials and methods: Axial methods for gating image acquisition to multiple points in the respiratory cycle interleaved with incremental table stepping during multidetector-row computed tomographic (MDCT) scanning were developed. Data sets are generated over multiple breaths, providing volume images representative of multiple points within a respiratory cycle. To determine the reproducibility and accuracy of the methods, six anesthetized sheep were studied by means of MDCT in nongated and airway-pressure (P(awy))-gated modes in which P(awy) was 0, 7, and 15 cm H2O.

Results: No significant differences were found between coefficients of variation in air volume measured from repeated static scans (1.74% +/- 1.78%), gated scans: inspiratory (1.2% +/- 0.44%) or expiratory gated (1.39% +/- 0.98%), or between static (1.74% +/- 1.78%) and gated (1.39% +/- 0.98%) scanning at similar P(awy) (P > .1). Measured air volumes were larger from static versus gated scans by 5.85% +/- 3.77% at 7 cm H2O and 4.45% +/- 3.6% at 15 cm H2O of P(awy) (P < .05), consistent with hysteresis. Differences between air volumes at 7 and 15 cm H2O measured from either static or gated scans or that delivered by a super syringe were insignificant (P < .05). Visual accuracy of three-dimensional anatomic geometry was achieved, and landmark certainty was within 1 mm across respiratory cycles.

Conclusions: A method has been shown that provides for accurate gating to respiratory signals during axial scanning. High-resolution volumetric image data sets are achievable while the scanned subject is breathing. Images are quantitatively similar to breath hold images, with differences likely explained by known pressure-volume hysteresis effects.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Lung / diagnostic imaging*
  • Lung Volume Measurements / methods*
  • Male
  • Phantoms, Imaging
  • Respiration
  • Sheep
  • Tomography, X-Ray Computed*