157 nm F2-laser writing of silica optical waveguides in silicone rubber

Opt Lett. 2005 Oct 15;30(20):2730-2. doi: 10.1364/ol.30.002730.

Abstract

Silica (SiO2) optical waveguides have been fabricated on the surface of silicone [(SiO(CH3)2)n] rubber by photochemical modification of silicone rubber into silica with 157 nm F2-laser radiation. The 2 mm thick silicone was exposed through a thin (approximately 0.2 mm) air layer to generate oxygen radicals that chemically assisted in the silica transformation. Silica waveguides were defined in 8-16 microm wide exposure strips by a proximity Cr-on-CaF2 photomask. Optimum laser processing conditions are presented for generating crack-free waveguides with good optical transparency at red (635 nm) and infrared (1550 nm) wavelengths. A propagation loss of approximately 6 dB/cm is reported at the 1550 nm wavelength.