The synthesis, structural, and spectroscopic characterization of uranium(IV) perrhenate complexes

Inorg Chem. 2005 Oct 17;44(21):7606-15. doi: 10.1021/ic0507971.

Abstract

We report the synthesis, structural, and spectroscopic characterization of a series of uranium(IV)-perrhenato complexes. Three isostructural complexes with general formula [U(ReO4)4(L)4] (where L = tri-n-butylphosphine oxide/TBPO (2), triethyl phosphate/TEP (3), or tri-iso-butyl phosphate/TiBP (4)), have been synthesized, both through the photoreduction of ethanolic {UO2}2+ solutions and also via a novel U(IV) starting material, U(ReO4)4.5H2O (1). Compound 1 has also been used in the preparation of [U(ReO4)4(TPPO)3(CH3CN)].2CH3CN (5) and [U(ReO4)(DPPMO2)3(OH)][ReO4]2.2CH3CN (6), where TPPO represents triphenylphosphine oxide and DPPMO2 represents bis(diphenylphosphino)methane dioxide. All six complexes have been spectroscopically characterized using NMR, UV-vis-NIR, and IR techniques, with 2, 3, 5, and 6 also fully structurally characterized. The U atoms in compounds 2-6 all exhibit eight-coordinate geometry with up to four perrhenate groups in addition to three (DPPMO2 and TPPO) or four (TEP, TiBP, TBPO) coordinated organic ligands. In the case of compounds 5 and 6, the coordination of eight ligands to the U(IV) center is completed by the binding of a solvent molecule (CH3CN) and OH-, respectively. Solid-state physical analysis (elemental and thermogravimetric) and infrared spectroscopy are in agreement with the structural studies. The crystallographic data suggest that the strength of the U(IV)-O-donor ligand bonds decreases across the series R3PO > [ReO4]- > (RO)3PO. Solution-state IR and 31P NMR spectroscopy appear to be in agreement with these solid-state results.